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Abstract. The finite-temperature behaviour of a relativistic field with a renormalisable 
ip6 self-interaction exhibiting spontaneous symmetry breaking, is studied in one space-ne 
time dimension. Using functional diagrammatic methods, the temperature-dependent 
effective potential and the critical temperature up to two loops are calculated. The nature 
of the phase transition is also investigated and is clarified to be one of first order. 

1. Introduction 

Recently, considerable interest has been shown in the effect of finite temperature on 
relativistic field theories that exhibit spontaneous symmetry breaking. This is due to 
the growing conviction among physicists that weak, electromagnetic and strong interac- 
tions may owe their origin to spontaneously broken gauge symmetries of a basic 
Lagrangian. The corresponding Hamiltonian system is in many ways similar to a 
superconductor. So, arguing by analogy with superconductivity, Kirzhnits and Linde 
(1972) suggested that a spontaneously broken symmetry in a relativistic field theory 
coupled to a finite temperature heat bath would be restored above some critical 
temperature. Later studies (Dolan and Jackiw 1974, Weinberg 1974) have established 
this fact on a quantitative basis. Functional diagrammatic methods for evaluating 
effective potentials (Coleman and Weinberg 1973, Iliopoulos et a1 1975, Jackiw 1974) 
can be used to study the effect of temperature on a relativistic field system. Dolan 
and Jackiw (1974) employed this method to evaluate the temperature-dependent 
effective potential and demonstrated that the symmetry behaviour in cp4 theory could 
be restored above a certain temperature. 

In this paper we present our calculations on the effect of finite temperature on a 
model field system exhibiting spontaneous symmetry breaking. We have chosen a 
general cp6 field model in (1 + 1) dimensions such that the classical potential possesses 
three absolute minima. The Lagrangian enjoys rp t* - cp internal symmetry, so that 
the vacuum around any one absolute minimum would correspond to spontaneous 
symmetry breaking. The model chosen by us has positive mass square and exhibits 
kink and anti-kink solutions (Lohe 1979). Using lattice approximation and the 
block-spin renormalisation group method, Boyanovsky and Masperi (1980) have 
shown that the nature of phase transitions associated with such a field system may be 
of second order or first order depending on the relative depths of the wells and the 
inter-site coupling. Besides its importance in particle physics as a model scalar field 
theory, the cp6 self-interacting model with a ‘specific form’ of the potential finds 
applications in solid state physics also, where it has been used to explain the first-order 
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phase transition from the ferroelectric to the paraelectric state and the structural phase 
transitions observed in crystals (Behera and Khare 1980, Lines and Glass 1977, Kittel 
1977). 

We have employed the functional diagrammatic method to study the temperature 
effect on the cp‘ field system. The paper is organised in the following way. In § 2 we 
formulate the effective potential for the model under consideration at zero temperature 
and show that our model is renormalisable. Section 3 deals with the detailed calculation 
of the effective potential at finite temperature and the calculations are done up to the 
two-loop level. It is shown that the broken symmetry originally present in the model 
can be removed, and the critical temperature is also evaluated in the high-temperature 
limit. In 0 4  we examine the nature of the phase transition. When the system is 
coupled to a heat bath, the vacuum expectation value (OlcplO) = U is replaced by the 
thermal average ( ( P ) ~  = uT taken with respect to a Gibbs ensemble (Kirzhnits and 
Linde 1976, Linde 1979). The order parameter of the theory thus becomes tem- 
perature dependent and vanishes at the critical temperature. The nature of the phase 
transition is clarified to be one of first order. 

2. Evaluation of effective potential at T = 0 

The model considered by us consists of a real, self-interacting Bose field d ( x )  in (1 + 1) 
dimensions, described by the Lagrangian density 

where m, A > 0. It is evident that the above Lagrangian ( 1 )  enjoys cp c* - Q internal 
symmetry. The classical potential corresponding to this Lagrangian is given by 

(2) 1 2 2  V(cp)=?A cp (cp2-m/A)2 

such that V ( q )  = V(-cp). The potential has three absolute minima: one at cp = 0 and 
the other two at cp = f (m/A)”’ = U. Hence the vacuum around cp = f (m/A)’” would 
correspond to spontaneous symmetry breaking. On shifting the field from cp + cp +U, 

where U is the classical constant scalar field, the Lagrangian ( 1 )  becomes 

S(cp +~)=$[a,(cp +u)12-$A2(cp + ~ ) ~ [ ( ( p  + u ) ~ - v I / A ] ~ .  (3 1 

The potential in this case is given by 

V(cp+~)=~A~u~(u~-m/A)~+~(m~-12Amu~+15A~u~)cp~+. . . . (4) 

The propagator corresponding to the shifted Lagrangian can be written as 

iA-’(u, k )  = k2  - M 2  

where 

M2=m2-12Amuz+15A2u4 

The zero-loop (tree approximation) contribution to the effective potential comes 

(6)  

from figure 1 and can be written as 
1 2 2  VO(U) = T A  U (U’ - m/A)2. 
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X 
Figure 1. The zero-loop approximation for the effective potential. 

The one-loop approximation to the effective potential (figure 2) is given by 

V1(u)=-- - d2k2 ln(k2+M2). 
2 (2.rr) 

0 
Figure 2. The one-loop approximation for the effective potential. 

On rotating this integral into Euclidean space we find 

(7) 

This integral is ultraviolet divergent; to evaluate it, we cut off the integral at k 2  = A2, 
and thus we have 

Vl(a) = (1/8.rr)M2 ln(A2/M2). (9) 
The divergence in (9) in the lowest order perturbation theory is caused by the graphs 
shown in figure 3, while there are no infinities associated with the u6 term; for instance 
the graph is finite. a 

Hence we may write the effective potential as 

V(u)  = $A 2u2(a2 - m/A)2 + kM2.n-' ln(A2/M2) + C1+ C2u2 + C3u4. (10) 

The constants C1, C2 and C3 may be determined by imposing the following normalisa- 
tion conditions, namely 

Vb)l,=J;;;T;r = 0; 

d2V(a)/da21,=GA = 4m2; 

d4 V(u) /du41 , , a  = 156Am. 

c, C, 62 C3 64 

Figure 3. Divergent graphs in the one-loop approximation. 
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Imposing the conditions (11) on (lo), we find that 

12Am A' 777 
C2 =-In (7) --Am 

8.zr 4m 1 6 ~  

15h2 A' 1257 h 2 .  
C, = --In (--) +- 

8.rr 4m2 1 6 ~  

Thus the renormalised effective potential, at zero temperature, for the model chosen 
by us can be written as 

(13) 8Ir 

This is the final expression for the effective potential at zero temperature in the 
one-loop approximation and it does not show any dependence on the cut-off. Since 
this procedure may be extended straightforwardly to higher loops, the theory is seen 
to be renormalisable. 

1 2 2  M 2  
V ( U )  = FA U (U' - m/h)'+- ln(4mZ/M2). 

3. Effective potential at finite temperature 

In this section we may evaluate the effective potential at finite temperature and show 
that the symmetry breaking present in the model can be removed if the temperature 
is raised above a certain value called the critical temperature. We may denote the 
temperature-dependent effective potential by VT(c). At zero temperature V'(U) = 
V0(cr) possesses symmetry breaking solutions. Hence aVO(a)/aa = 0 for U # 0. If the 
finite temperature contribution can eliminate symmetry breaking, then a VT(a)/aa = 
2~ aVT(v)/aa2 = 0 only if U = 0. For large U', aV'(cr)/aaZ is assumed to be positive. 
Writing 

V'((T) = V"U) + VT((T) 

a V0(U)/dU21,=0 + a VT/acr2J,=o 5 0. 

a V ' ( U ) / ~ U ' J , = ~  3 -5m2. 

we have 

This implies that 

Hence the critical temperature can be defined by the relation 

(14) 1 2  a V'c (a)/a(~~J,=, = - Fm . 
The effective potential at finite temperature to all loops can be written as (Dolan 

(15) 
Here V0(u) is the classical potential-the zero-loop contribution to the effective 
potential. The zero-loop contribution is temperature independent. VT ((T) gives the 
one-loop approximation. Higher loops are given by (exp(i d3x 2'I(c, q)))-the sum 

and Jackiw 1974) 

VT(a) = Voir) + Vf ( U )  + i (exp (i I d3x Y1(u, p))) . 
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of all the one-particle irreducible vacuum graphs. In our case, the zero-loop contribu- 
tion to the effective potential is given by 

(16) 1 2 2  VO(U) = T A  U (U* - m/A)’. 

Now we may evaluate the contribution from the one-loop to the effective potential 
at finite temperature. The procedure is to replace the time integral by the sum 

j-Ig=iT OD 

n=-OD 

where o is periodic such that wn = 2.rriTn (bosons) where n = 0, *l ,  *2? *3,. . . . 
Accordingly, (7) may be rewritten as 

where 

dk 

so that 

where E% = k2+M2.  The evaluation of (19) is done by performing the summation 
first. Writing 

u ( E )  = ln(4tr2n2T2+E2) 
n 

we have 

Using the identity 

1 
+ n  2 -= (.rr/x) coth(.rrx) 

we find that 

This leads to the result: 

u ( E )  = 2T-’[$E + T ln(1 
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Hence (19) becomes 

dk EM 
V T ( a ) =  I z[z+ T ln(1 

= vy (a) + v: (a) .  

V': (a) gives the usual zero-temperature one-loop approximation to the effective 
potential. This may be compared with the expression (7) obtained in 0 2: and 

Q v: (a) = T I  dk ln(1- e-EM'T) 
T o  

gives the temperature-dependent one-loop correction term. Introducing x 2  as 

we have 

T 2  
T o  

v: (a) = - I dx In[ 1 - exp - ( x 2  + M 2 /  T2)'/']. 

This integral may be evaluated by expanding v: as a fourier series and in the 
high-temperature region we find that 

( 2 3 )  VT (a) = -iwT2 + &ZT. 

T, = fm2/A  (24) 

Invoking (14) we can find that the critical temperature correct to one-loop order is 

which is indeed large in the weak-coupling limit. 
We shall now proceed to evaluate the two-loop contribution to V T ( a ) .  Our 

motivation for doing this is to investigate the effect of higher-order loops in determining 
the critical temperature in a more precise manner. The two-loop contributions come 
from the two graphs (figures 4(a )  and 4(b)) .  The contribution from figure 4(a )  with 
proper combinatorial factor can be put as 

Since we are interested only in the temperature-dependent terms, we find that 

VTa (U) = (- 1 2A M )[ a(MT/4)/aM '1' 
= -&AmT2/M2. (26) 

The contribution from figure 4(b)  can be expressed as 
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00 0 
Figure 4. The two-loop approximation for the effective potential. 

The summation may be carried out first, and in the higher temperature limit, we find 
that 

(28) 
dkl dk2 

V T b  ( U )  = - 96h2m2u2T3 IT 2 I! (k: +M2)(ki +M2)((k,+k2)*+M2)' 

We may evaluate this integral as follows. Let 

dkl dk2 '=I (k: +M2)(k: +M2)[(k~+k2)2+M21' 

Now define 

as the one-dimensional fourier transform. This integral when evaluated gives: 

Thus we can find that 

Hence 

I = r 2 / 3 M 4 .  

Thus we get 

V T b  (U )  = -32h2m2u2T3/M4.  ( 3 1 )  

Hence the temperature-dependent part of the effective potential to the two-loop level 
is given by 

(32) 
VT(u) = -qrT 1 2  +&T -&AmT2/M2 - 32A2m2u2T3/M4.  

-$ATc - $A 2Tz /m2  - 32h 2 T f / m 2  = - im2,  

The critical temperature is evaluated using relation (14) ; thus 

(33 )  

which is a cubic equation in T,. Introducing y as 
Tc=y-' 128, 
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equation (33) can be cast into the standard form y 3  + p y  + 4 = 0 where 

p =&m2/A - 1 . 1 5 6 ~ 1 0 - ~  

4 = -&m4/A2- 1 . 0 9 8 ~  10b3m2/A t - 2 . 5 7 4 ~  
(34) 

From these relations it is seen that q2/4+p3/27>0 which is the condition to be 
satisfied by (33) that it has one real root, so that the critical temperature is determined 
uniquely. The critical temperature correct to the two-loop level is then given by 

(35) 1 3 1 /2  1/3 1 3 1/2 1/3 1_ 
T ~ = [ - i q + ( & ~ + z p  ) 1 +[-$4-(t42+Z’iP 1 -128- 

This completes our calculation of the critical temperature, correct to two-loop order. 

4. Nature of the phase transition 

The above calculations reveal that the spontaneous symmetry breaking present in the 
cp6 model can be removed by raising the temperature above a critical value. In the 
language of superconductivity, we may restate this in terms of a phase transition from 
the ordered phase characterised by (cp) # 0 to a disordered phase characterised by 
(cp) = 0, as the temperature of the system is raised. We may follow the method of 
Linde (1979) to study the nature of the phase transition. We replace the vacuum 
expectation value (OlcplO) = 0 = U by its thermal average ( ( P ) ~  = uT taken with respect 
to a Gibbs ensemble so that the order parameter of the theory becomes explicitly 
temperature-dependent. The ensemble average of the finite-temperature Green func- 
tion is defined as ( . , . ) = Tr(e . . . )/Tr(e-H’T) where H is the Hamiltonian govern- 
ing the system. The parameter characterising the thermodynamic equilibrium state 
of the cp particles of the system is given by the density of the particles in momentum 
space: 

-H/T 

nk = l / (eWk’=-  1) where n k  = ( u t a k ) ;  

W k  = ( k 2 +  m2)l/’; a t  and ak are the usual creation and annihilation operators. 
The equation of motion corresponding to the Lagrangian (1) is given by 

Ocp - m2cp +4Amcp3-3A2cp5 = 0. (36) 
On shifting the field from cp to p + U  and taking the Gibbs average of the corresponding 
equation, 

O u ~ - m ~ u ~ + 4 A m u ;  + 12AmuT(cp2)+ 12Amu~(cp) 

- 15A 2 ~ 7 - ( ~ 4 )  - 30A ’U$ ( c p 3 )  - 30A ’U; ( c p 2 )  

- 15A2&(cp)-3AZ~; = O .  (37) 
Using standard finite-temperature Green-function methods (Abrikosov et a1 1964) 
we may find that in the high-temperature limit 

1 “  
2~ -m 

( c p 2 )  = - dk(k2 + m2)-”2{exp[(k2 + m2)l/’/ TI - l}-’ 

= T/2m. 

From similar calculations we also find that 

(q4) = qT2/m2 b3) = 0 (cp) = 0. 
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Assuming that aT is constant we obtain 

(41) u T [ - m 2 + 4 A m u ~ + 6 A T - 3 A 2 a : - 1 ~ A 2 T u ~ / m - ~ h  45 2 T 2 / m 2 ] = 0 .  

This equation has three solutions: 

( + T = o  (42) 

(43) U ;  = [4Am2 - 15A2T f (4A2m4 - 48A 3m2T + 90A 4T2)”2]/6h 2m. 

Each solution of these equations defines a possible phase of the field system with its 
characteristic excitations. On heating the field system from absolute zero, the two 
branches of U $  given by (43) can coincide at a temperature TI  = 0.10m2/A yielding 
a common value for aT, namely, a;, =5m/12A. Nevertheless, this is not a phase 
transition, and as the temperature increases further, the two branches of U; will again 
separate. The existence of the separate branches of U; implies that the phase transition 
at the critical temperature T, is of first order. 

The mass of the excitations may be found by making the shift a+a+Su in (40). 
Retaining only terms linear in Sa and using (40) 

~ S u - [ m 2 + 1 5 A 2 u ~ + 4 5 A 2 u ~ T ~ m + ~ A 2 T 2 / m 2 - 6 A T - 1 2 A m u ~ ] S u = O  (44) 

M :  = m 2 - 6 A T + y A 2 T 2 / m 2 -  12Amu; +45A2T&/m + M A 2 & .  

from which the excitation mass is given by 

(45) 

The disordered phase is associated with excitations of mass 

M :  = m 2 - 6 A T + 7 A  T / m 2 .  45 2 2 

However, this mass does not vanish at the critical temperature. The mass obtained 
from the effective potential V ( u ) ,  defined by M 2  = a2V(u)/au21,=o, can be easily 
shown to vanish at the transition point. For the disordered phase we find 

M 2  = m2-3AT-;A2T2/m2+ 192A2T3/rm2. (47) 
The existence of distinct solutions for uT as given by (42) and (43) may be indicative 

of a domain structure of the vacuum. In the case of the Higgs model such a domain 
structure has been speculated upon (Linde 1979), wherein adjacent domains are 
associated with opposite signs of uT. The domains are separated by kinks, but this is 
not a stable configuration because they define degenerate minima of the effective 
potential. The situation is different in the rp6 case. There is a five-fold multiplicity 
of values of uT which can be associated with different domains in the vacuum. Even 
though domains carrying condensate values, UT, which differ only in sign, may join 
together due to the collapse of kink walls, there still may be some domains with 
different absolute values of uT. These latter configurations may be assumed to be 
stable. It is worth mentioning in this context that the existence of a domain wall 
structure has been very well established experimentally in the case of ferroelectrics 
which are described by a rp6 coupled phenomenological model defined in terms of 
polarisation as the order parameter (Lines and Glass 1977, Kittel 1977). 



2240 K Babu Joseph and V C Kuriakose 

Acknowledgment 

One of us (VCK) is thankful to the University Grants Commission, New Delhi, for 
the award of a Teacher Fellowship. 

References 

Abrikosov A A, Gorkov L P and Dzyaloshinski I E 1964 Methods of Quantum Field Theory in Statistical 

Behera S N and Khare A 1980 Pramana 14 327 
Boyanovsky D and Masperi L 1980 Phys. Reo. D21 1550 
Coleman S and Weinberg E 1973 Phys. Rev. D7 1888 
Dolan L and Jackiw R 1974 Phys. Reu. D9 3320 
Iliopoulos J, Itzykson C and Martin A 1975 Rev. Mod. Phys. 47 165 
Jackiw R 1974 Phys. Reo. D9 1686 
Kirzhnits D A and Linde A D 1972 Phys. Z,etf. 42B 471 
-1976 Ann. Phys., NY 101 195 
Kittel C 1977 Introduction to Solid State Physics (Delhi: Wiley Eastern University Edition) 
Linde A D 1979 Rep. Prog. Phys. 42 389 
Lines M E and Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Oxford: 

Lohe M A 1979 Phys. Reo. D2O 3120 
Weinberg S 1974 Phys. Reo. D9 3357 

Physics (New Jersey: Prentice Hall) 

Clarendon) 


